ISBN-10:
0071771336
ISBN-13:
9780071771337
Pub. Date:
01/31/2013
Publisher:
McGraw-Hill Professional Publishing
Practical Electronics for Inventors / Edition 3

Practical Electronics for Inventors / Edition 3

by Paul Scherz, Simon Monk
Current price is , Original price is $40.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Overview

THE ELECTRONICS KNOW-HOW YOU NEED TO BECOME A SUCCESSFUL INVENTOR

"If there is a successor to Make: Electronics, then I believe it would have to be Practical Electronics for Inventors....perfect for an electrical engineering student or maybe a high school student with a strong aptitude for electronics....I’ve been anxiously awaiting this update, and it was well worth the wait."—GeekDad (Wired.com)

Spark your creativity and gain the electronics skills required to transform your innovative ideas into functioning gadgets. This hands-on, updated guide outlines electrical principles and provides thorough, easy-to-follow instructions, schematics, and illustrations. Find out how to select components, safely assemble circuits, perform error tests, and build plug-and-play prototypes. Practical Electronics for Inventors, Third Edition, features all-new chapters on sensors, microcontrollers, modular electronics, and the latest software tools.

Coverage includes:

  • Resistors, capacitors, inductors, and transformers
  • Diodes, transistors, and integrated circuits
  • Optoelectronics, solar cells, and phototransistors
  • Sensors, GPS modules, and touch screens
  • Op amps, regulators, and power supplies
  • Digital electronics, LCD displays, and logic gates
  • Microcontrollers and prototyping platforms, including Arduino
  • DC motors, RC servos, and stepper motors
  • Microphones, audio amps, and speakers
  • Modular electronics and prototyping

Product Details

ISBN-13: 9780071771337
Publisher: McGraw-Hill Professional Publishing
Publication date: 01/31/2013
Edition description: List
Pages: 1040
Sales rank: 1,194,074
Product dimensions: 8.40(w) x 10.70(h) x 1.50(d)

About the Author

Paul Scherz is a physicist/mechanical engineer who received his B.S. in physics from the University of Wisconsin. He is an inventor/hobbyist in electronics, an area he grew to appreciate through his experience at the University's Department of Nuclear Engineering and Engineering Physics and the Department of Plasma Physics.

Dr. Simon Monk has a degree in Cybernetics and Computer Science and a PhD in Software Engineering. Monk spent several years as an academic before he returned to industry, co-founding the mobile software company Momote Ltd. He has been an active electronics hobbyist since his early teens and is a full time writer on hobby electronics and open source hardware. Dr. Monk is the author of numerous electronics books, including 30 Arduino Projects for the Evil Genius and Arduino + Android Projects for the Evil Genius.

Read an Excerpt

Chapter 1: Introduction to Electronics

Perhaps the most common predicament a newcomer faces when learning electronics is figuring out exactly what it is he or she must learn. What topics are worth covering, and in which general order should they be covered? A good starting point to get a sense of what is important to learn and in what general order is presented in the flowchart in Fig. 1.1. This chart provides an overview of the basic elements that go into designing practical electrical gadgets and represents the information you will find in this book. The following paragraphs describe these basic elements in detail.

At the top of the chart comes the theory. This involves learning about voltage, current, resistance, capacitance, inductance, and various laws and theorems that help predict the size and direction of voltages and currents within circuits. As you learn the basic theory, you will be introduced to basic passive components such as resistors, capacitors, inductors, and transformers.

Next down the line comes discrete passive circuits. Discrete passive circuits include current-limiting networks, voltage dividers, filter circuits, attenuators, and so on. These simple circuits, by themselves, are not very interesting, but they are vital ingredients in more complex circuits.

After you have learned about passive components and circuits, you move on to discrete active devices, which are built from semiconductor materials. These devices consist mainly of diodes (one-way current-flow gates), transistors (electrically controlled switches /amplifiers), and thyristors (electrically controlled switches only).

Once you have covered the discrete active devices, you move onto discrete active/passive circuits. Some of these circuits include rectifiers (ac-to-do converters), amplifiers, oscillators, modulators, mixers, and voltage regulators. This is where things start getting interesting.

To make things easier on the circuit designer, manufacturers have created integrated circuits (ICs) that contain discrete circuits-like the ones mentioned in the last paragraph-that are crammed onto a tiny chip of silicon. The chip usually is housed within a plastic package, where tiny internal wires link the chip to external metal terminals. Integrated circuits such as amplifiers and voltage regulators are referred to as analog devices, which means that they respond to and produce signals of varying degrees of voltage. (This is unlike digital ICs, which work with only two voltage levels.) Becoming familiar with integrated circuits is a necessity for any practical circuit designer.

Digital electronics comes next. Digital circuits work with only two voltage states, high (e.g., 5 V) or low (e.g., 0 V). The reason for having only two voltage states has to do with the ease of data (numbers, symbols, control information) processing and storage. The process of encoding information into signals that digital circuits can use involves combining bits (1 's and 0's, equivalent to high and low voltages) into discrete-meaning "words." The designer dictates what these words will mean to a specific circuit. Unlike analog electronics, digital electronics uses a whole new set of components, which at the heart are all integrated in form. A huge number of specialized ICs are used in digital electronics. Some of these ICs are designed to perform logical operations on input information, others are designed to count, while still others are designed to store information that can be retrieved later on. Digital ICs include logic gates, flip-flops, shift registers, counters, memories, processors, and the like. Digital circuits are what give electrical gadgets "brains." In order for digital circuits to interact with analog circuits, special analog-to-digital (A/D) conversion circuits are needed to convert analog signals into special strings of 1's and 0's. Likewise, digitalto-analog conversion circuits are used to convert strings of 1's and 0's into analog signals.

Throughout your study of electronics, you will learn about various input-output (I/O) devices (transducers). Input devices convert physical signals, such as sound, light, and pressure, into electrical signals that circuits can use. These devices include microphones, phototransistors, switches, keyboards, thermistors, strain gauges, generators, and antennas. Output devices convert electrical signals into physical signals. Output devices include lamps, LED and LCD displays, speakers, buzzers, motors (dc, servo, stepper), solenoids, and antennas. It is these I/O devices that allow humans and circuits to communicate with one another. And finally comes the construction/ testing phase. This involves learning to read schematic diagrams, constructing circuit prototypes using breadboards, testing prototypes (using multimeters, oscilloscopes, and logic probes), revising prototypes (if needed), and constructing final circuits using various tools and special circuit boards...

Table of Contents

Part I - Theory

Chapter 1. Introduction

Chapter 2. Theory

Part II - Devices

Chapter 3. Basic Electronic Components

Chapter 4. Discrete Semiconductors

Chapter 5. Optoelectronics

Chapter 6. Sensors

Chapter 7. Hands-on Electronics

Part III - Design

Chapter 8. Operational Amplifiers

Chapter 9. Filters

Chapter 10. Oscillators and Timers

Chapter 11. Voltage Regulators and Power Supplies

Chapter 12. Digital Electronics

Chapter 13. Microcontrollers

Chapter 14. Electromechanical Devices

Chapter 15. Audio Electronics

Chapter 16. Applied Electronics

Part IV - Appendixes

Appendix A. Power Distribution and Home Wiring

Appendix B. Error Analysis

Appendix C. Useful Facts and Formulas

Appendix D. Component Data, List of Logic ICs, Foreign Semiconductor Codes

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

Practical Electronics for Inventors 4 out of 5 based on 0 ratings. 3 reviews.
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago