Methods of Applied Fourier Analysis

Methods of Applied Fourier Analysis

by Jayakumar Ramanathan

Paperback(Softcover reprint of the original 1st ed. 1998)

$99.99
Members save with free shipping everyday! 
See details

Overview

Methods of Applied Fourier Analysis is a comprehensive development of the ideas of harmonic analysis with a special emphasis on application oriented themes. The basic material on the Fourier series and transform and Hardy Spaces are interwoven with chapters that treat fast algorithms, the spectral theory of stationary processes, H-infinity control theory, and wavelet theory.

Product Details

ISBN-13: 9781461272670
Publisher: Birkh�user Boston
Publication date: 10/23/2012
Series: Applied and Numerical Harmonic Analysis
Edition description: Softcover reprint of the original 1st ed. 1998
Pages: 329
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1 Periodic Functions.- 1.1 The Characters.- 1.2 Some Tools of the Trade.- 1.3 Fourier Series: Lp Theory.- 1.4 Fourier Series: L2 Theory.- 1.5 Fourier Analysis of Measures.- 1.6 Smoothness and Decay of Fourier Series.- 1.7 Translation Invariant Operators.- 1.8 Problems.- 2 Hardy Spaces.- 2.1 Hardy Spaces and Invariant Subspaces.- 2.2 Boundary Values of Harmonic Functions.- 2.3 Hardy Spaces and Analytic Functions.- 2.4 The Structure of Inner Functions.- 2.5 The H1 Case.- 2.6 The Szegö-Kolmogorov Theorem.- 2.7 Problems.- 3 Prediction Theory.- 3.1 Introduction to Stationary Random Processes.- 3.2 Examples of Stationary Processes.- 3.3 The Reproducing Kernel.- 3.4 Spectral Estimation and Prediction.- 3.5 Problems.- 4 Discrete Systems and Control Theory.- 4.1 Introduction to System Theory.- 4.2 Translation Invariant Operators.- 4.3 H?Control Theory.- 4.4 The Nehari Problem.- 4.5 Commutant Lifting and Interpolation.- 4.6 Proof of the Commutant Lifting Theorem.- 4.7 Problems.- 5 Harmonic Analysis in Euclidean Space.- 5.1 Function Spaces on Rn.- 5.2 The Fourier Transform on L1.- 5.3 Convolution and Approximation.- 5.4 The Fourier Transform: L2 Theory.- 5.5 Fourier Transform of Measures.- 5.6 Bochner’s Theorem.- 5.7 Problems.- 6 Distributions.- 6.1 General Distributions.- 6.2 Two Theorems on Distributions.- 6.3 Schwartz Space.- 6.4 Tempered Distributions.- 6.5 Sobolev Spaces.- 6.6 Problems.- 7 Functions with Restricted Transforms.- 7.1 General Definitions and the Sampling Formula.- 7.2 The Paley-Wiener Theorem.- 7.3 Sampling Band-Limited Functions.- 7.4 Band-Limited Functions and Information.- 7.5 Problems.- 8 Phase Space.- 8.1 The Uncertainty Principle.- 8.2 The Ambiguity Function.- 8.3 Phase Space and Orthonormal Bases.- 8.4 The Zak Transform and the Wilson Basis.- 8.5 An Approximation Theorem.- 8.6 Problems.- 9 Wavelet Analysis.- 9.1 Multiresolution Approximations.- 9.2 Wavelet Bases.- 9.3 Examples.- 9.4 Compactly Supported Wavelets.- 9.5 Compactly Supported Wavelets II.- 9.6 Problems.- A The Discrete Fourier Transform.- B The Hermite Functions.

Customer Reviews