Pub. Date:
Pearson Education
High Speed Digital Design: A Handbook of Black Magic / Edition 1

High Speed Digital Design: A Handbook of Black Magic / Edition 1

by Howard Johnson, Martin GrahamHoward Johnson
Current price is , Original price is $130.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.


Focused on the field of knowledge lying between digital and analog circuit theory, this new text will help engineers working with digital systems shorten their product development cycles and help fix their latest design problems. KEY TOPICS: The scope of the material covered includes signal reflection, crosstalk, and noise problems which occur in high speed digital machines (above 10 megahertz). MARKET:This volume will be of practical use to digital logic designers, staff and senior communications scientists, and all those interested in digital design.

Product Details

ISBN-13: 9780133957242
Publisher: Pearson Education
Publication date: 04/08/1993
Series: Prentice Hall Signal Integrity Library Series
Edition description: New Edition
Pages: 464
Sales rank: 1,195,125
Product dimensions: 7.35(w) x 9.55(h) x 1.30(d)

About the Author

Howard W. Johnson is president of Olympic Technology Group, Inc., of Redmond, Washington, a digital electronic design and consulting organization. Before founding the firm, he was Manager of Technology and Advanced Development at Ultra Network Technologies, a manufacturer of gigabit-per-second local area networks for supercomputers. Since obtaining his Ph.D. in 1982 from Rice University, he has specialized in the design of high-speed digital communications and digital signal processing systems.

Martin Graham has been a Professor of Electrical Engineering and Computer Sciences at the University of California at Berkeley since 1966, where he teaches the design of reliable and manufacturable electronic systems.



This is a book for digital designers. It highlights and explains analog circuit principles relevant to high-speed digital design. Teaching by example, the authors cover ringing, crosstalk, and radiated noise problems which commonly beset high-speed digital machines.

None of this material is new. On the contrary, it has been handed down by word of mouth and passed along through application notes for many years. This book simply collects together that wisdom. Because much of this material is not covered in standard college curricula, many practicing engineers view high-speed effects as somewhat mysterious, ominous, or daunting. For them, this subject matter has earned the name 'black magic.' The authors would like to dispel the popular myth that anything unusual or unexplained happens at high speeds. It's simply a matter of knowing which principles apply, and how.

Digital designers working at low speeds do not need this material. In low-speed designs, signals remain clean and well behaved, conforming nicely to the binary model.

At high speeds, where fast signal rise times exaggerate the influence of analog effects, engineers experience a completely different view of logic signals. To them, logic signals often appear hairy, jagged, and distorted. For their products to function, high-speed designers must know and use analog principles. This book explains what those principles are and how to apply them.

Readers without the benefit of formal training in analog circuit theory can use and apply the formulas and examples in this book. Readers who have completed a first year class in introductory linear circuit theory may comprehend this material at a deeper level.

Chapters 1-3 introduce analog circuit terminology, the high-speed properties of logic gates, and standard high-speed measurement techniques, respectively. These three chapters form the core of the book and should be included in any serious study of high-speed logic design.

The remaining chapters, 4-12, each treat specialized topics in high-speed logic design and may be studied in any order.

Appendix A collects highlights from each section, listing the most important ideas and concepts presented. It can be used as a checklist for system design or as an index to the text when facing a difficult problem.

Appendix B details the mathematical assumptions behind various forms of rise time measurement. This section helps relate results given in this book to other sources and standards of nomenclature.

Appendix C lists standard formulas for computing the resistance, capacitance, and inductance of physical structures. These formulas have been implemented in MathCad and are available from the authors in magnetic form.

Customer Reviews