Harmonic Analysis, Partial Differential Equations and Applications: In Honor of Richard L. Wheeden

Harmonic Analysis, Partial Differential Equations and Applications: In Honor of Richard L. Wheeden

Hardcover(1st ed. 2017)

$119.99
View All Available Formats & Editions
Members save with free shipping everyday! 
See details

Overview

This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.

Product Details

ISBN-13: 9783319527413
Publisher: Springer International Publishing
Publication date: 02/22/2017
Series: Applied and Numerical Harmonic Analysis
Edition description: 1st ed. 2017
Pages: 301
Product dimensions: 6.10(w) x 9.25(h) x (d)

Table of Contents

Preface

1. Luis Caffarelli ( Univ. of Texas)
caffarel@math.utexas.edu

2. Sagun Chanillo (Rutgers Univ.)
chanillo@math.rutgers.edu

3. Seng-Kee Chua ( National Univ. of Singapore)
matcsk@nus.edu.sg

4. Bruno Franchi ( Univ. of Bologna)
bruno.franchi@unibo.it

5. Cristian Gutierrez ( Temple Univ. Philadelphia, USA)
cristian.gutierrez@temple.edu

6. Xiaojun Huang ( Rutgers Univ.)
huangx@math.rutgers.edu

7. Carlos Kenig ( Univ. of Chicago)
cek@math.uchicago.edu

8. Ermanno Lanconelli ( Univ. of Bologna)
ermanno.lanconelli@unibo.it

9. Eric Sawyer ( Mcmaster Univ.)
sawyer@mcmaster.ca

10. Raul Serapioni ( Univ. of Trento, Italy)
serapion@science.unitn.it

11. Rodolfo Torres ( Univ. of Kansas, Lawrence, KS)
torres@math.ku.edu

12. Igor Verbitsky ( Univ. of Missouri, Columbia)
verbitskyi@missouri.edu

13. Alexander Volberg ( Michigan State Univ.)
volberg@math.msu.edu

14. Michael Wilson ( Univ. of Vermont)
jmwilson@uvm.edu

Customer Reviews