Paperback(Softcover reprint of the original 1st ed. 2004)

Members save with free shipping everyday! 
See details


Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances

Presents new results and applications to diverse fields such as geometry, number theory, and analysis

Contributors are leading experts in their respective fields

Will be of interest to both pure and applied mathematicians

Product Details

ISBN-13: 9781461264743
Publisher: Birkh�user Boston
Publication date: 10/04/2012
Series: Applied and Numerical Harmonic Analysis
Edition description: Softcover reprint of the original 1st ed. 2004
Pages: 268
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Preface Contributors Lattice Point Problems: Crossroads of Number Theory, Probability Theory, and Fourier Analysis Totally Geodesic Radon Transform of L^P-Functions on Real Hyperbolic Space Fourier Techniques in the Theory of Irregularities of Point Distributions Spectral Structure of Sets of Integers One-Hundred Years of Fourier Series and Spherical Harmonics in Convexity Fourier Analytic Methods in the Study of Projections and Sections of Convex Bodies The Study of Translational Tiling with Fourier Analysis Discrete Maximal Functions and Ergodic Theorems Related to Polynomials What is it Possible to Say About an Asymptotic of the Fourier Transform of the Characteristic Function of a Two-Dimensional Convex Body with Nonsmooth Boundary? Some Recent Progress on the Restriction Conjecture Average Decay of the Fourier Transform Index

Customer Reviews