ISBN-10:
1493979361
ISBN-13:
9781493979363
Pub. Date:
03/16/2019
Publisher:
Springer New York
Applied Predictive Modeling

Applied Predictive Modeling

by Max Kuhn, Kjell Johnson

Paperback

Current price is , Original price is $99.99. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Overview

Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process.

This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package.


This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Product Details

ISBN-13: 9781493979363
Publisher: Springer New York
Publication date: 03/16/2019
Edition description: Softcover reprint of the original 1st ed. 2013
Pages: 600
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages.

Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms.

Table of Contents

General Strategies.- Regression Models.- Classification Models.- Other Considerations.- Appendix.- References.- Indices.

What People are Saying About This

From the Publisher

"This strong, technical, hands-on treatment clearly spells out the concepts, and illustrates its themes tangibly with the language R, the most popular open source analytics solution." (Eric Siegel, Ph.D. Founder, Predictive Analytics World, Author, Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die)

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews